HOMOTOPICAL ALGEBRA QUILLEN PDF

Buy Homotopical Algebra (Lecture Notes in Mathematics) on ✓ FREE SHIPPING on qualified orders. Daniel G. Quillen (Author). Be the first to. Quillen in the late s introduced an axiomatics (the structure of a model of homotopical algebra and very many examples (simplicial sets. Kan fibrations and the Kan-Quillen model structure. . Homotopical Algebra at the very heart of the theory of Kan extensions, and thus.

Author: Grolkree Dibei
Country: Serbia
Language: English (Spanish)
Genre: Science
Published (Last): 18 January 2007
Pages: 201
PDF File Size: 10.3 Mb
ePub File Size: 3.57 Mb
ISBN: 450-7-77057-295-9
Downloads: 92201
Price: Free* [*Free Regsitration Required]
Uploader: Zulujind

Wednesday, 11am-1pm, from January 29th to April 2nd 20 hours Location: MALL 2 unless announced otherwise.

Homotopical algebra

The subject of homotopical algebra originated with Quillen’s seminal monograph [1], in which he introduced the notion of a model category and used it to develop an axiomatic approach to homotopy theory.

Since then, model categories have become one a very important concept in algebraic topology and have found an increasing number of applications in several areas of pure mathematics.

In particular, in recent years they have been used to develop higher-dimensional category theory and to establish new links between mathematical logic and homotopy theory which have given rise to Voevodsky’s Univalent Foundations of Mathematics programme. The aim of this course is to give an introduction to the theory of model categories.

  AN UNSTOPPABLE FORCE ERWIN MCMANUS PDF

The course is divided in two parts. The first part will introduce the notion of a model category, discuss some of the main examples such as the categories of topological spaces, chain complexes and simplicial sets and describe the fundamental concepts and results of the theory the homotopy category of a model category, Quillen functors, derived functors, the small object argument, transfer theorems.

The second part will deal with more advanced topics and its content will depend on the audience’s interests. Possible topics include the axiomatic development of homotopy theory within a model category, homotopy limits and colimits, the interplay between model categories and higher-dimensional categories, and Voevodsky’s Univalent Foundations of Mathematics programme. Basic concepts of category theory category, functor, natural transformation, adjoint functors, limits, colimitsas covered in the MAGIC course.

The standard reference to review these topics is [2]. Some familiarity with topology. For the theory of model categories we will use mainly Dwyer and Spalinski’s introductory paper [3] and Hovey’s monograph [4].

Other useful references include [5] and [6]. Additional references will be provided during the course depending on the advanced topics that will be treated.

Spalinski, Homotopy theories and model categoriesin Handbook of Algebraic Topology, Elsevier, A preprint version is available from the Hopf archive. Hovey, Mo del categoriesAmerican Mathematical Society, Hirschhorn, Model categories and their localizations albebra, American Mathematical Society, Smith, Homotopy limit functors on model categories and homotopical categoriesAmerican Mathematical Society, Joyal’s CatLab nLab Homotopial lecture notes: Lecture 1 January 29th, Lecture 2 February 5th, Equivalent characterisation of weak factorisation systems.

  AMANDA HOCKING SWITCHED PDF

Definition of Quillen model structure. Equivalent characterisation of Quillen model structures in terms of weak factorisation system. Lecture 3 February 12th, Outline of the Hurewicz model structure on Top.

Path spaces, cylinder spaces, mapping path spaces, mapping cylinder spaces. Lecture 4 February 19th, Duality. The dual of a model structure.

Homotopical algebra – Daniel G. Quillen – Google Books

Lecture 5 February 26th, Left homotopy continued. Lecture 6 March 5th, Auxiliary results towards the construction of the homotopy category of a model category.

Lecture 7 March 12th, The homotopy category. Fibrant and cofibrant replacements. The homotopy category as a localisation. Lecture 8, March 19th, Homotopy type theory no lecture notes: Lecture 9 March 26th, Weak factorisation systems via the the small object argument.

Lecture 10 April 2nd, Model structures via the small object argument. Outline of the proof that Top admits a Quillen model structure with weak homotopy equivalences as weak equivalences.